© Friday, 27 June 2014 14:53

I3-52: CONSTANT VOLUME GAS THERMOMETER ABSOLUTE ZERO

Additional Info

ID Code:

Purpose:

Description:

13-52
Determine the value of absolute zero.
With a constant volume of air in the chamber, measure the pressure $P(B)$ at the boiling point and the pressure $P(F)$ at the freezing point of water. If the pressure P is read at some arbitrary temperature T , then that temperature in degrees celsius is:
$\mathrm{T}=100[\mathrm{P}-\mathrm{P}(\mathrm{F})] /[\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{F})]$
For an ideal gas, the pressure should go to zero at the temperature of absolute zero. Setting $\mathrm{P}=0$, the value of absolute zero in degrees celcius can be calculated.

Another way to do this is to plot a graph of pressure as a function of temperature. Draw the best line through the three points determined at boiling, freezing, and room temperature, and extend it so that it intersects the pressure axis, which is $\mathrm{T}=0$ in celsius degrees.

Above are photographs of the pressure gauge at each of the three points described.

Availability:
Available
References:
REFERENCES: (PIRA 4E30.20)

[^0]
[^0]: Tweet
 Like 0
 Share

